The Learning Pathway: Planning for Learning and Assessment in Number Sense and Algebraic Reasoning (N/K-6)

Outcomes listed are based on END of grade achievement expectations. Teachers should refer to the Manitoba Curriculum Framework of Outcomes to assess and plan for breadth and depth of instruction.

©Winnipeg School Division

WNCP Outcomes marked with an asterisk (*) appear in more than one Signpost.

Uses Visualization

Modeling and Communicating Mathematical Thinking (Using tools such as: beaded number lines, ten frames, double ten frames, ENL, rekenrek, manipulatives, etc) 1.N.4* / 1.N.9* / 1.PR.3* / 1.PR.4 I can represent and describe the results of counting and operations to 20 by: • drawing and labeling diagrams writing ± number sentences I can represent and describe numbers to 20 by: • using a variety of manipulatives, including ten frames and based-10 materials modeling a number using two different objects. I can solve addition and subtraction problems to 20 from screened/partially screened collections I can describe equality and inequality as a balance **Application of Knowledge** Flexible Thinking Pre-Proportional Reasoning 1.N.3* / 1.N.5* / 1.N.7* 2.N.1* / 2.N.5* 1.N.9* / 1.N.10* / 1.PR.3* I can visualize and count all objects (up to 20) I can use strategies to determine addition and to solve simple problems using: • a variety of groups with and without subtraction problems to 20, by: starting from known doubles singles • using addition to subtract (think I can use doubles to solve simple problems involving: I can visualize and count all objects when: · naming half of an even-numbered set • using pairs to 5 and 5 + strategies to 10 solving addition [to 10] and to 20 solving subtraction [to 10] and to 20 • comparing two sets [to 10] and to 20 Confirm benchmark to 10 before aoina to 20 I can visualize and count all objects (up to 20) to solve simple problems involving: • count the total number of objects in a set by counting-on by using groups of 2s, Knowledge • from any starting point fwd to 100 and bkwd. from 100 • starting from zero by 2s to 30 and by 5s to 100 and by 10s to 100 I can identify familiar patterns/arrangements: to 20, and describe the number's relationship to 5 and to 10 • compatible number pairs for 5, 10 and 20 **Basic Arithmetical Learning** • doubles to 5+5 doubles ± 1 to 5+5 Algebraic Reasoning 1.PR.2 / 1.PR 3* / 1.PR.4 / 2.PR.1 • predict the next element in a pattern and translate a repeating pattern from one representation to another identify the core of a repeating pattern record equalities using the = symbol

The Learning Pathway: Planning for Learning and Assessment in Number Sense and Algebraic Reasoning (N/K-6)

Outcomes listed are based on END of grade achievement expectations. Teachers should refer to the Manitoba Curriculum Framework of Outcomes to assess and plan for breadth and depth of instruction.

©Winnipeg School Division

WNCP Outcomes marked with an asterisk (*) appear in more than one Signpost.

Uses Additive Reasoning: Capable

Modeling and Communicating Mathematical Thinking

(Using tools such as; ENL, arrays, equations, expressions, pictures, manipulatives and uses technology, etc.)

4.N.1 / 4.N.2 / 4.N.5 / 4.N.6 / 4.N.7 / 4.N.8 / 4.N.9 / 4.N.10 / 4.PR. 1 / 4.PR.2* / 4.PR.3 / 4.PR.4 / 4.PR.5 I can use diagrams, words and equations to represent my personal mental strategies, and my results, for whole number

• multiplication, division (2 or 3-digit by 1-digit)

modeling multiplication using the distributive property and arrays

I can use numbers to 10 000 in a variety of ways to:

• represent and describe math relationships using charts and diagrams to solve problems

identify, describe, reproduce, represent and explain patterns and relationships in a variety of ways

I can represent (concretely, symbolically, pictorially):

• decimals (10ths, 100ths) and fractions in a variety of ways

Application of Knowledge

Flexible Thinking

I can use repeated halving in context involving: • identifying halves, fourths or quarters, of a set

Pre-Proportional Reasoning

4.N5 / 4.N8

I can use halving: • to determine fractions of a set to 20

• using part-whole place value reasoning

can solve multiplication and division problems by: using arrays to represent multiplication

Knowledge

 decimal numbers involving tenths fractions with like denominators using fourths

• the number of 10s and 100s in 4 digit numbers (standard and non-standard) • compatible fractions with $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{3}$ (concrete and pictoral)

• recall multiplication facts for 2, 5, and 10 to 80 develop multiplication facts to 81 • use strategies such as: skip counting, doubling, halving, doubling and adding 1 more group, repeated doubling, using ten facts and 5 facts

 determine patterns in tables and charts extend natterns in tables and charts.

• create an equation based on a context with a symbol to represent an unknown (addition/subtraction.)

The Learning Pathway: Planning for Learning and Assessment in Number Sense and Algebraic Reasoning (N/K-6)

Outcomes listed are based on END of grade achievement expectations. Teachers should refer to the Manitoba Curriculum Framework of Outcomes to assess and plan for breadth and depth of instruction.

Uses Proportional Reasoning: Beginning

Modeling and Communicating Mathematical Thinking

(ratio table, double number line, bar models, ENL,

illustrate, represent, explain, model, describe, record, discuss in context and uses technology, etc.)

5.N.11* / 6.N.1 / 6.N.3 / 6.N.4 / 6.N 5 / 6.N.6 / 6.N.8 / 6.PR.1 / 6.PR.2

• represent, describe and write numerals for numbers of any magnitude (greater that one million - less than one-

explain how that pattern of the place value system works

• provide and explain a concrete or pictorial representation for a ratio

- describe, using everyday language, orally or in writing, the relationship shown on a graph
- state, using math language, the relationship in a table of values

translate and graph a pattern to a table of values

• identify the factors for a number and demonstrate/explain the strategy used (concretely, pictorially, symbolically) • represent ratio and proportion concretely, pictorially, symbolically

I can use diagrams, equations and words to represent my personal mental strategies, and my results, for problems involving: • improper fractions can represent a number greater than 1

operations with whole and decimal numbers (to thousandths)

Application of Knowledge

Flexible Thinking

5.N.5* / 6.N.3* / 6.N.8

• use previously learned strategies to develop more sophisticated strategies (i.e. combining strategies) extend strategy use to higher numeral ranges

Developing Proportional Reasoning 6.N.4 / 6.N.5 / (7.N.5)[•] / 6.PR1 / 6.PR.3

I can use proportional reasoning with the AREA and SET model for fractions involving

- halving in a fraction context. Sixths by halving thirds, eights by halving fourths
- renaming improper fractions to a mixed number • explaining the part-whole and part-part ratio of a
- using a ratio table for solving problems

• Outcomes involving rational number in grade 6 are sparse. In order for students to be successful in grade 7 they need more experience in becoming flexible with fractions. This outcome is not being assessed but to honour developmental instruction students need exposure.

Knowledge

• read, order and relate fractions including mixed and improper

• the number of 10ths (standard and non-standard) and 100ths, 1000ths with decimal numbers to 1000ths

• solve a problem using percents (compatibles)

• involving decimals (x or ÷ by 10)

 demonstrate an understanding of the relationships within table of values represent and describe patterns and relationships using tables • represent generalizations arising from number relationships using equations · demonstrate and explain the meaning of preservation of equality